3.633 \(\int \frac{1}{\sqrt{c x} (a+b x^2)^{5/2}} \, dx\)

Optimal. Leaf size=157 \[ \frac{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{12 a^{9/4} \sqrt [4]{b} \sqrt{c} \sqrt{a+b x^2}}+\frac{5 \sqrt{c x}}{6 a^2 c \sqrt{a+b x^2}}+\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}} \]

[Out]

Sqrt[c*x]/(3*a*c*(a + b*x^2)^(3/2)) + (5*Sqrt[c*x])/(6*a^2*c*Sqrt[a + b*x^2]) + (5*(Sqrt[a] + Sqrt[b]*x)*Sqrt[
(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(12*a^(9
/4)*b^(1/4)*Sqrt[c]*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0882105, antiderivative size = 157, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {290, 329, 220} \[ \frac{5 \sqrt{c x}}{6 a^2 c \sqrt{a+b x^2}}+\frac{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{12 a^{9/4} \sqrt [4]{b} \sqrt{c} \sqrt{a+b x^2}}+\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[c*x]*(a + b*x^2)^(5/2)),x]

[Out]

Sqrt[c*x]/(3*a*c*(a + b*x^2)^(3/2)) + (5*Sqrt[c*x])/(6*a^2*c*Sqrt[a + b*x^2]) + (5*(Sqrt[a] + Sqrt[b]*x)*Sqrt[
(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(12*a^(9
/4)*b^(1/4)*Sqrt[c]*Sqrt[a + b*x^2])

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{c x} \left (a+b x^2\right )^{5/2}} \, dx &=\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}}+\frac{5 \int \frac{1}{\sqrt{c x} \left (a+b x^2\right )^{3/2}} \, dx}{6 a}\\ &=\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}}+\frac{5 \sqrt{c x}}{6 a^2 c \sqrt{a+b x^2}}+\frac{5 \int \frac{1}{\sqrt{c x} \sqrt{a+b x^2}} \, dx}{12 a^2}\\ &=\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}}+\frac{5 \sqrt{c x}}{6 a^2 c \sqrt{a+b x^2}}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{6 a^2 c}\\ &=\frac{\sqrt{c x}}{3 a c \left (a+b x^2\right )^{3/2}}+\frac{5 \sqrt{c x}}{6 a^2 c \sqrt{a+b x^2}}+\frac{5 \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{12 a^{9/4} \sqrt [4]{b} \sqrt{c} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0352485, size = 79, normalized size = 0.5 \[ \frac{5 x \left (a+b x^2\right ) \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )+7 a x+5 b x^3}{6 a^2 \sqrt{c x} \left (a+b x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[c*x]*(a + b*x^2)^(5/2)),x]

[Out]

(7*a*x + 5*b*x^3 + 5*x*(a + b*x^2)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)])/(6*a^2*
Sqrt[c*x]*(a + b*x^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.019, size = 216, normalized size = 1.4 \begin{align*}{\frac{1}{12\,{a}^{2}b} \left ( 5\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) \sqrt{-ab}{x}^{2}b+5\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) \sqrt{-ab}a+10\,{b}^{2}{x}^{3}+14\,abx \right ){\frac{1}{\sqrt{cx}}} \left ( b{x}^{2}+a \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(1/2)/(b*x^2+a)^(5/2),x)

[Out]

1/12*(5*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^
(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*x^2*b+5*((b*x+(-a*b)^
(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*Elliptic
F(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*a+10*b^2*x^3+14*a*b*x)/(c*x)^(1/2)/a^2/b/(
b*x^2+a)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{5}{2}} \sqrt{c x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(5/2)*sqrt(c*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{2} + a} \sqrt{c x}}{b^{3} c x^{7} + 3 \, a b^{2} c x^{5} + 3 \, a^{2} b c x^{3} + a^{3} c x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(c*x)/(b^3*c*x^7 + 3*a*b^2*c*x^5 + 3*a^2*b*c*x^3 + a^3*c*x), x)

________________________________________________________________________________________

Sympy [C]  time = 8.71567, size = 44, normalized size = 0.28 \begin{align*} \frac{\sqrt{x} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{5}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{5}{2}} \sqrt{c} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(1/2)/(b*x**2+a)**(5/2),x)

[Out]

sqrt(x)*gamma(1/4)*hyper((1/4, 5/2), (5/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(5/2)*sqrt(c)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )}^{\frac{5}{2}} \sqrt{c x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(1/2)/(b*x^2+a)^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + a)^(5/2)*sqrt(c*x)), x)